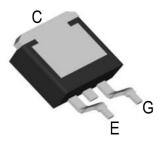


SSC65T50HAGT6


Trench FSII Fast IGBT

> Features

V _{CES}	V _{GES}	lc
650V	+20V	80A@25 ℃
0000	<u> </u>	50A@100 ℃

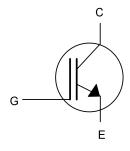
Pin Configuration

 \geq

TO-263-3L (Bottom View)

Using trench design and advanced FS (Field Stop)

> Description


second generation technology, the 650V Trench FSII IGBT offers superior conduction and switching performances, and easy parallel operation.

> Applications

- Welding Machines
- PFC Circuits
- UPS
- Power Inverters

> Ordering Information

Device	Package	Shipping		
SSC65T50HAGT6	TO-263-3L	50/Tube		
Minimum Purchase Quantity: 1K/Box				

Pin Configuration

<u>Marking</u> (YW: Internal Traceability Code)

➢ Absolute Maximum Ratings (T_A=25℃ unless otherwise noted)

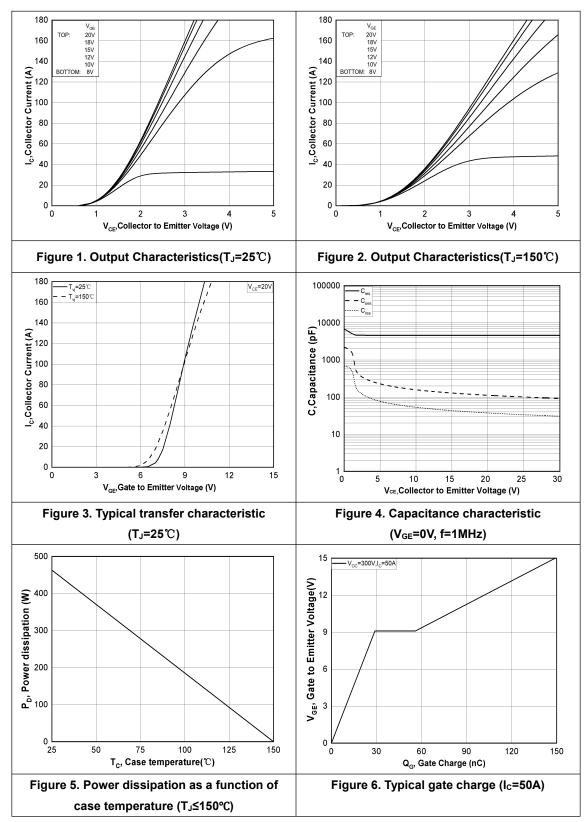
Symbol	Parameter		Ratings	Unit
V _{CES}	Collector-Emitter Voltag	ge	650	V
V _{GES}	Gate-Emitter Voltage	Gate-Emitter Voltage		V
		Tc=25℃	80	٨
lc	Collector Current	Tc=100℃	50	A
I _{Cpuls}	Pulsed Collector Current, t _p limited by T _{Jmax}		200	А
-	Turn off safe operating area, V_{CE} = 6	Turn off safe operating area, V _{CE} = 650V,T _J = 150 $^\circ \! \mathbb{C}$		А
D		T _A =25℃	463	14/
PD	Power Dissipation ^a	T _A =70℃	296	W
TJ	Operating Junction and Storage Tem	perature Range	-55~150	°C
T _{STG}	Operating Junction and Storage Temperature Range		-55~150	°C
TL	Maximum Temperature for S	oldering	260	°C

> Thermal Resistance Ratings (T_A=25°C unless otherwise noted)

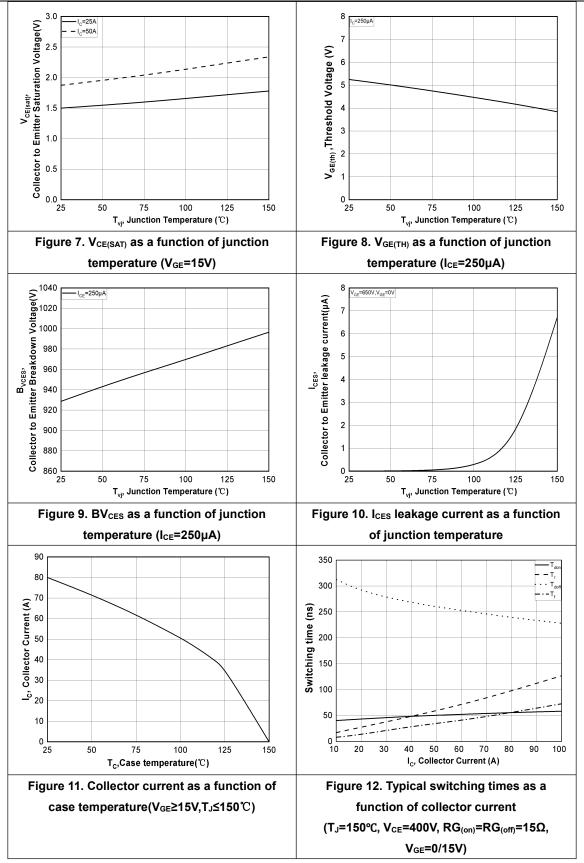
Symbol	Parameter	Ratings	Unit	
R _{0JA}	Junction-to-Ambient Thermal Resistance	32	°C/W	
R _{θJC}	Junction-to-Case Thermal Resistance	0.47	C/VV	

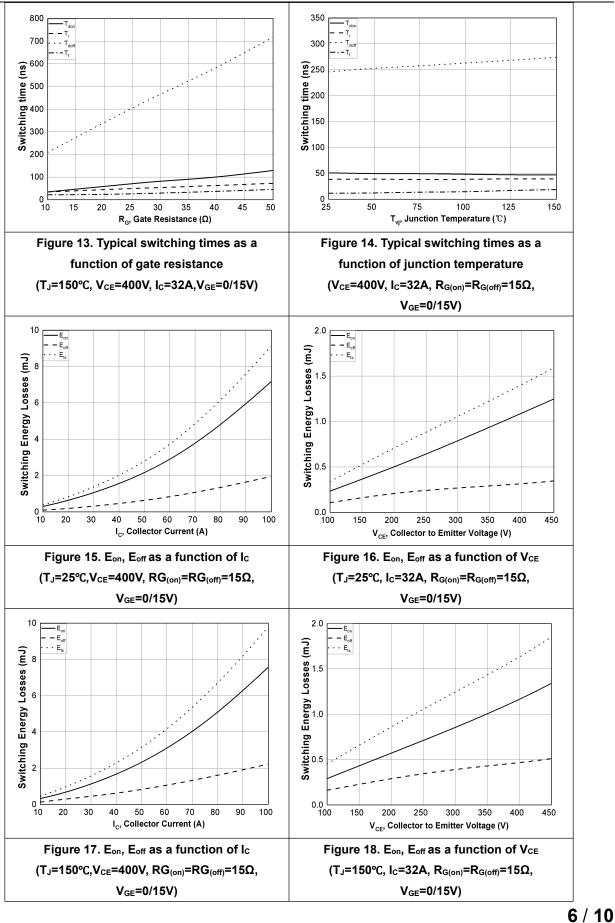
Note:

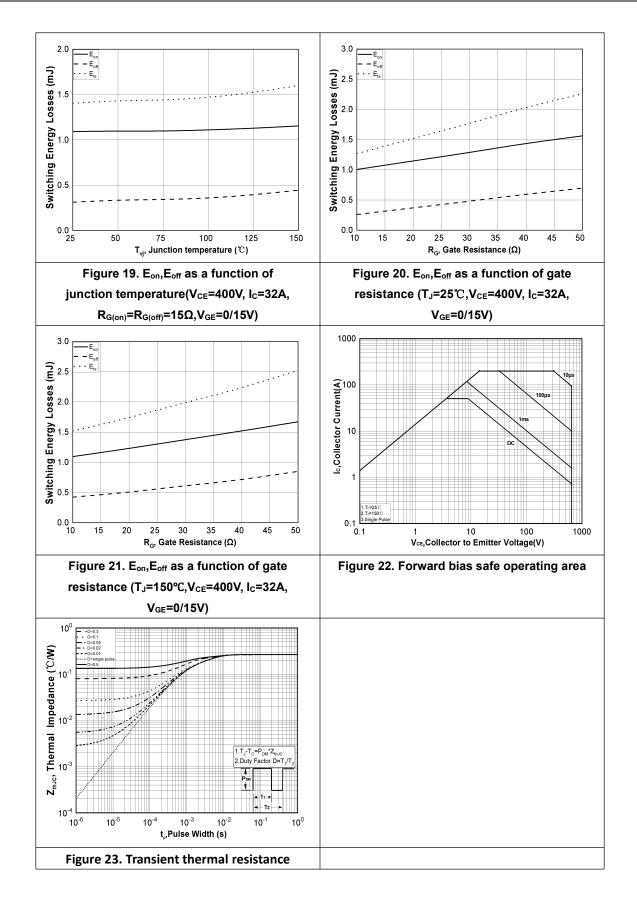
a. The maximum current rating is package limited.

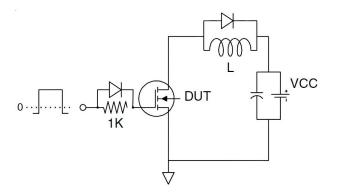


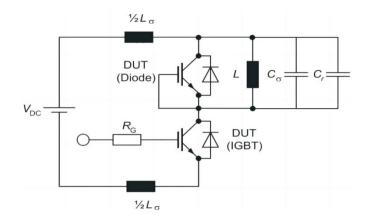
> Electrical Characteristics (T_A=25 $^{\circ}$ C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_C = 0.25mA$	650			V
1	Collector-Emitter Leakage	V _{GE} =0V, V _{CE} =650V, TJ=25℃			1	uA
I _{CES}	Current	V _{GE} =0V, V _{CE} =650V, TJ=150℃			50	uA
$I_{\text{GES}(F)}$	Gate to Emitter Forward Leakage	V _{GE} = +20V, V _{CE} = 0V			100	nA
$I_{\text{GES}(R)}$	Gate to Emitter Reverse Leakage	V_{GE} = -20V, V_{CE} = 0V			-100	nA
		I _C =50A, V _{GE} =15V, T _J =25℃		1.9	2.3	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C =50A, V _{GE} =15V, T _J =125℃		2.2		V
		I _C =50A, V _{GE} =15V, T _J =150℃		2.3		V
$V_{\text{GE(th)}}$	Gate Threshold Voltage	I_{C} = 1mA, V_{CE} = V_{GE}	5.0	5.3	5.6	V
G _{FS}	Transconductance	V_{CE} = 20V, I_{C} = 50A		19		S
Cies	Input Capacitance	V _{CE} = 25V, V _{GE} = 0V,		4587		
Coes	Output Capacitance			99		pF
Cres	Reverse Transfer Capacitance	f = 1MHz, TJ = 25℃		33		1
T _{D(ON)}	Turn-on delay time			51		
Tr	Rise time			37		1
T _{D(OFF)}	Turn-off delay time	TJ=25℃, V _{CC} =400V, I _C =32A,		244		- ns
T _f	Fall time	V _{GE} =0/15V, R _g =15Ω,		13		1
Eon	Turn-On Switching Loss	Inductive Load		1.05		
Eoff	Turn-Off Switching Loss			0.3		mJ
Ets	Total Switching Loss			1.35		1
T _{D(ON)}	Turn-on delay time			47		
Tr	Rise time			40]
T _{D(OFF)}	Turn-off delay time	TJ=150℃, V _{CC} =400V, I _C =32A,		273		- ns
T _f	Fall time	V_{GE} =0/15V, R _g =15 Ω ,		20		1
Eon	Turn-On Switching Loss	Inductive Load		1.16		
E _{off}	Turn-Off Switching Loss			0.46		mJ
E _{ts}	Total Switching Loss			1.62		1
Q _G	Total Gate Charge			149		
Q_{GE}	Gate to Emitter Charge	$V_{CC} = 300V, I_C = 50A,$ $V_{GE} = 0/15V$		29		nC
Q _{GC}	Gate to Collector Charge	VGE - 0/10 V		27		1


➢ Typical Performance Characteristics (T_A=25℃ unless otherwise noted)

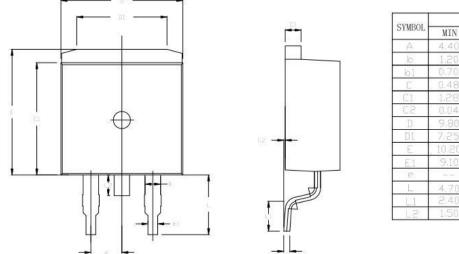




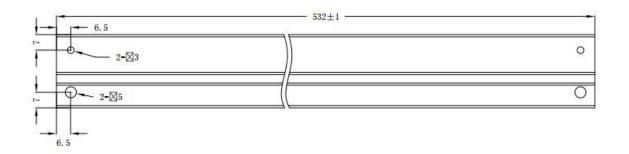


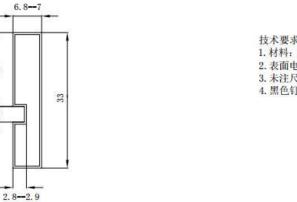
> Test Circuit

(1) Gate Charge Test Circuit



(2) Switch Time Test Circuit




> Package Information

CUMPOL	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
A	4,40	(4.60	
b	1.20		1.36	
k1	0.70	8.81	0.90	
C	0.48		0.53	
C1	1.28	8222	1.32	
65	0.04	0.12	0.20	
D	9.80	10,00	10.20	
D1	7.25	7.40	7.55	
E	10.20	10.30	10.40	
E1	9.10	9.20	9,30	
e	-	2.54	100	
L	4.70	4.90	5.10	
11	2.40	2.60	2.80	
12	1.50	1.70	1.90	

T=0.5 ±0.1

技术要求: 1. 材料:透明PVC 2. 表面电阻: 10E5[~]10E10 0HMS/SQ 3. 未注尺寸公差±0.3 4. 黑色钉子由厂家出货时塞于左端

- 18

eri I

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.